

Abingdon Road, Clifton Hampden

Surface Water Management Strategy

On behalf of Thomas Homes Ltd

Project Ref: 332110526 | Rev: A | Date: July 2022

Document Control Sheet

Project Name:	Clifton Hampden
Project Ref:	332110526
Report Title:	Surface Water Management Strategy
Doc Ref:	332110526-2001-R001
Date:	July 2022

	Name	Position	Signature	Date
Prepared by:	Peter Bunn	Graduate Engineer	РВ	July 2022
Reviewed by:	Jasper Syms	Engineer	JS	July 2022
Approved by:	Simon Hudson	Senior Associate	SH	July 2022
For and on behalf of Stantec UK Limited				

Revision	Date	Description	Prepared	Reviewed	Approved
-	July 2022	First Issue	PB	JS	SH
А	November 2023	Revised to LLFA / Planning Comments	VT	JS	SH

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

1	Introdu	iction	7
	1.1	Appointment	7
	1.2	Site Proposals	7
	1.3	Reference Documents	7
2	Site Co	ntext	8
	2.1	Site Description and Location	8
	2.2	Flood Risk	8
	2.3	Site Topography	9
	2.4	Geology and Hydrology	9
	2.5	Existing Drainage Regime	11
3	Surface	e Water Drainage	12
	3.1	Treatment of Existing Drainage	12
	3.2	Climate Change Allowances	12
	3.3	Proposed Surface Water Drainage	12
	3.4	Flood Exceedance	14
	3.5	Contamination and Treatment	14
4	Foul W	ater Drainage	15
	4.1	Existing Foul Water System	15
	4.2	Proposed Foul Water System	15
5	Summa	ary	16

Figures

Figure 2.1: Site Locations and Flood Zones (gov.uk flood map)	8
Figure 2.2: Extract of the Long Term Flood Risk Map for England (gov.uk), site outlines in red	9
Figure 2.3: BGS Surface Geology Mapping	10
Figure 3.1: Extract of Planning Policy Guidance on Flood Risk and Coastal Change	12

Tables

Table 2.1: Infiltration Test Results	10
Table 2.2: Greenfield Rates for the Sites.	11
Table 3.1: Proposed Discharge Rates for the Sites.	14

Appendices

Appendix A	Site Location Plan
Appendix B	Thames Water Asset Records
Appendix C	Greenfield Run-off Rates
Appendix D	Proposed Drainage Layout
Appendix E	Drainage Standard Details
Appendix F	Microdrainage Calculation Results
Appendix G	Flood Exceedance Routes
Appendix H	Land Owners Consent

this page is intentionally black

1 Introduction

1.1 Appointment

- 1.1.1 Stantec UK Ltd (Stantec) have been commissioned by Thomas Homes Ltd to prepare a surface water management strategy and design for the proposed residential development located to the north and south of Abingdon Road, Clifton Hampden, Oxfordshire.
- 1.1.2 The purpose of this report is to identify and describe the existing site drainage, with consideration to ground conditions, geology and ground water across the site and propose a sustainable surface water drainage strategy (SWDS) for the proposed development.

1.2 Site Proposals

- 1.2.1 The Site is currently greenfield land, used primarily for agricultural purposes. The northern section of the site also contains the existing Village Hall and allotments. This is hereafter referred to as the Site.
- 1.2.2 The Site is to be developed to provide 17 residential units, a new surgery, and a re-developed village hall. Amenity space and landscaping will also be provided.

1.3 Reference Documents

- 1.3.1 This surface water drainage strategy has been designed and prepared with reference to documents and information sources provided and/or published by the following bodies:
 - a) CIRIA C753 The SUDs Manual and SUDs Hierarchy;
 - b) National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG);
 - c) Oxfordshire County Council, the Lead Local Flood Authority (LLFA) Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire (December 2021);
 - d) Environment Agency (EA) Standing Advice;
 - e) Thames Water;
 - f) Code for Adoption where applicable;
 - g) Relevant Building Regulations where applicable; and
 - h) Best practice.

2 Site Context

2.1 Site Description and Location

- 2.1.1 The Site is located on the north-western edge of the village of Clifton Hampden and is split into two parts, situated to the north and south of A415 Abingdon Road. The northern parcel is at National Grid Reference 454560E 195650N, with a postcode of OX14 3EG. The southern parcel is at National Grid Reference 454480E 195510N, with an approximate postcode of OX14 3DE. A site location plan is shown in Appendix A.
- 2.1.2 The total area of the Site is approximately 4.45ha. The northern section occupies an area of 3.05ha, and the southern section having an area of 1.4ha.
- 2.1.3 The Site is predominantly greenfield, the northern section is arable land with a mixture of active and abandoned allotments. A small portion of the northern section is occupied by the existing Village Hall. The southern section of the Site is currently used as a paddock.
- 2.1.4 Following the proposed development approximately 0.52ha of the northern section and 0.21ha of the southern section will become impermeable.

2.2 Flood Risk

- 2.2.1 The nearest watercourse to the Site is the River Thames; located approximately 150m to the south-east. Ditches that drain to the River Thames are located immediately north of the northern section and approximately 120m southwest of the southern section.
- 2.2.2 The Site is located entirely within Flood Zone 1, representing areas with a low probability of flooding from nearby watercourses. An extract of the *Long Term Flood Risk Map for England* (gov.uk) shows the Site in relation to adjacent Flood Zones 2 and 3, presented in Figure 2.1.

Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Figure 2.1: Site Locations and Flood Zones (gov.uk flood map)

2.2.3 The Long Term Flood Risk Map for England (gov.uk) shows the Site to be at negligible to no risk of flooding from rivers, the sea, or reservoirs. The mapping tool also shows very low risk of surface water flooding across the entire site area. The flood risk map is based on mathematical modelling, considering surfaces, topology, and existing land uses. No significant flooding occurs from the proposed surface water drainage strategy, so the risk of surface water flooding will continue to be negligible across the Site.

Extent of hooding nom surface water

High Medium Low Very Low + Location you selected

Figure 2.2: Extract of the Long Term Flood Risk Map for England (gov.uk), site outlines in red.

2.3 Site Topography

- 2.3.1 The northern section of the Site falls from a high point of 56.55mAOD located in the middle of the western boundary. The Site slopes towards the north-eastern and south-eastern corners, with low points around 54.00mAOD in both corners.
- 2.3.2 The southern section falls from the northern boundary along Abingdon Road to the southern boundary (56.30mAOD to 53.25mAOD). The southern boundary slopes steeply down to the properties along High Street.

2.4 Geology and Hydrology

- 2.4.1 The geological record data from the British Geological Society (BGS) show the Site lies on a boundary of differing geological deposits.
- 2.4.2 The northern section of the Site, including the village hall and allotments, is formed of superficial deposits of sand and gravel to the south and west. No superficial deposits were recorded to the north and east. This overlies a bedrock formation of the Lower Greensand sandstone group.
- 2.4.3 The southern section of the Site, currently used as a paddock, has superficial deposits of sand and gravel to the north and east. No superficial deposits were recorded to the south and west. The Site is founded on bedrock deposits of the Gault formation (clay and mudstone) to the south and west, and the Lower Greensand formation (sand and sandstone) to the north and east.
- 2.4.4 See Figure 2.3 for British Geological Society mapping.

Figure 2.3: BGS Surface Geology Mapping

2.4.5 Ground Investigation Services (Southern) Ltd have performed an intrusive site investigation, including 6no. boreholes and 8no. trial pits. Infiltration tests were conducted within the eight trial pits, and the results are shown in Table 2.1, below.

Trial Pit	Location on Site	Infiltration Rate (m/s)
SA1	Northern section, north-east corner	1.76x10 ⁻⁶
SA2	Northern section, north	1.78x10 ⁻⁶
SA3	Northern section, east	1.30x10 ⁻⁶
SA4	Northern section, south	1.11x10 ⁻⁵
SA5	Southern section, west	_*
SA6	Southern section	1.07x10 ⁻⁶
SA7	Southern section,	3.34x10 ⁻⁶
SA8	Southern section, centre	_*

Table	2.1:	Infiltration	Test	Results.
1 abio	2.1.	initia adon	1001	i toouito.

*No significant change in levels within SA5 and SA8 were recorded during the test period, so no infiltration rate was calculable.

- 2.4.6 Groundwater monitoring carried out by Ground Investigation Services (Southern) Ltd recorded striking groundwater in the northern section at levels ranging from 0.70m to 1.57m below ground level, rising to between 0.24m and 0.62m during subsequent monitoring periods.
- 2.4.7 For the southern section, groundwater was not present during the first round of monitoring, with no groundwater strikes occurring up to the 3m maximum borehole depth. During subsequent monitoring periods, groundwater began to develop at depths between 1.21m and 1.81m below ground level.

2.4.8 Groundwater monitoring across the Site showed shallow groundwater levels, with seasonal fluctuation causing shallower groundwater levels during winter months.

2.5 Existing Drainage Regime

- 2.5.1 The Site is predominantly greenfield, with some areas of brownfield land. The northern section comprises a grassed field with sparse allotment plots. The current village hall, an electrical substation and a small car park are located to the south-east. The southern section is a grassed field with stable buildings located to the west.
- 2.5.2 Thames Water asset records have been obtained which indicate the presence of an existing adopted foul water rising main crossing the southern section of the Site. Thames Water asset records are included in Appendix B.
- 2.5.3 An existing manhole has been identified in the south-east corner of the southern section. Further investigation will need to be carried out to determine type, pipe levels and pipe diameters.
- 2.5.4 Soft landscaping is assumed to drain via infiltration. The discharge routes of the foul and surface water for the existing village hall are unknown. If the village hall drains to Thames Water surface water sewers it is assumed this will be via an unrestricted outfall. The ancillary car park for the village hall is assumed to utilise over-the-edge drainage, as no gullies or other primary drainage has been identified on the topographical survey.
- 2.5.5 A drainage / utilities survey may be necessary to confirm the points above.
- 2.5.6 Greenfield discharge rates for the site were calculated using Microdrainage to determine the existing surface water run-off rates from the undeveloped site. These can be seen in Table 2.2 below and the calculations provided within Appendix C.

Return Period (Years)	Greenfield	Run-off Rate
	Per Hectare (l/s/ha)	Site Area (4.45ha) (l/s)
1 in 1	1.3	5.8
QBAR	1.5	6.7
1 in 30	3.4	15.1
1 in 100	4.9	21.8

Table 2.2: Greenfield Rates for the Sites.

3 Surface Water Drainage

3.1 Treatment of Existing Drainage

- 3.1.1 Where possible, existing drainage should be reused; however, the layout of the existing drainage on-site is not suitable to receive connections from the new site development. No evidence of SuDS features, surface water flow controls or attenuation storage have been found on-site.
- 3.1.2 Further investigation is recommended to identify any remaining on-site drainage that is to be abandoned and removed prior to construction. Drainage to be removed will require checking for live connections. Any existing private drainage should only have served the existing village hall, on the northern section of the Site.

3.2 Climate Change Allowances

- 3.2.1 In February 2016 the Environment Agency released 'Flood risk assessments: climate change allowances'¹ guidance to support the NPPF. Within this guidance it states that the appropriate allowances for increases in peak rainfall intensity for the proposed development, over the next 100 years, are the central and upper end allowances for increases in peak rainfall intensity of 20% and 40% respectively.
- 3.2.2 This SWMS has undertaken calculations to inform the design of flood mitigation measures based on a 40% increase in peak rainfall intensity (the upper end allowance).

3.3 Proposed Surface Water Drainage

3.3.1 Due to the unsuitability of the existing network, a new surface water drainage network is proposed for the development. Following the SuDS hierarchy as outlined in the Planning Policy Guidance², see Figure 3.1 below, the preferable outfall option is an infiltration system.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, highway drain, or another drainage system;
- 4. to a combined sewer.

Figure 3.1: Extract of Planning Policy Guidance on Flood Risk and Coastal Change.

3.3.2 Due to the high water table, especially in the wetter winter months, soakaways are not a suitable solution for the discharge of surface water run-off from this site. Additionally, the Site slopes steeply down to High Street at the southern boundary, creating the potential for seepage lines to occur above neighbouring properties if infiltration features were used in the southern portion of the Site.

¹ Environment Agency, Flood risk assessments: climate change allowances (February 2016) (<u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>)

² Planning Policy and Guidance, Flood Risk and Coastal Change (March 2014) (<u>https://www.gov.uk/guidance/flood-risk-and-coastal-change</u>)

- 3.3.3 Therefore, the second option of the SuDS hierarchy will be used, and the surface water drainage system will outfall at the greenfield rate to an existing watercourse approximately 120m to the south-west of the Site. The watercourse drains to the River Thames to the south of the Site. Access to this watercourse has been agreed across the intervening third party land (Appendix H).
- 3.3.4 The majority of the hard landscaping will utilise a porous subbase to provide attenuation storage for surface water runoff. Industry standard software Microdrainage has been used to ensure the subbase will have sufficient capacity to store the runoff associated with storm events up to and including the 1 in 100 year (1% AEP) +40% event. The northern section of the Site requires a 575mm depth of subbase and the southern section 425mm.
- 3.3.5 Additionally, the porous subbase in the southern section utilises a 14x10x0.4m geo-cellular crate to provide additional attenuation capacity for the system. The crate will be hydraulically linked to the subbase above. The crate is intended to prevent excessive subbase depths across the site, which would require extra stone imports and deeper onsite excavation. The crate has no treatment potential, however all surface water flows entering the crate system will have undergone treatment processes upstream, via features such as filter drains and catchpits.
- 3.3.6 The Microdrainage calculations for the Site include a coefficient of volumetric run-off (C_v) value to account for loss of some runoff from impermeable areas through cracks and into depressions, and by drainage onto permeable areas. Regarding C_v values the Wallingford Procedure Volume 4 states "the overall average value of C_v is about 0.75, ranging from 0.6... to 0.9". In accordance with Oxfordshire County Council guidance, C_v values for this Site have been uplifted to 0.90 for paved areas and 0.95 for roof areas in the calculations.
- 3.3.7 Microdrainage calculation results are included in Appendix F.
- 3.3.8 Surface water will be conveyed via a piped system which will utilise perforated pipes to collect the water from the porous subbase before discharging to the existing water course at the greenfield rate (QBar).
- 3.3.9 The discharge rate will be restricted by a vortex flow control within a chamber located upstream of the outfall within the Site boundary.
- 3.3.10 As the developed area of the Site is small (impermeable area 0.73ha) it is not practical to limit the discharge rates to greenfield rates. The discharge rate for this Site will therefore be restricted to no more than 2 l/s for rainfall events up to and including the 1 in 100year + 40% climate change events.
- 3.3.11 Table 3.1, below, presents the calculated discharge rates for the Site across all design storm events. Full drainage calculations are included in Appendix F.

Return Period (Years)	Proposed Discharge Rate (I/s)
1 in 1	1.8
1 in 30	1.9
1 in 100	1.9
1 in 100 + 40% CC	2.0

- 3.3.12 The proposed drainage strategy is presented on drawings 332110526-2001-001 and 332110526-2001-002, included in Appendix D, along with schedules on 332110526-2001-003.
- 3.3.13 Standard details for the drainage elements implemented within this scheme are included in Appendix E.

3.4 Flood Exceedance

3.4.1 Flood Exceedance flows are shown on drawings 332110526-2001-004 and 332110526-2001-005 (Appendix G), illustrating that any potential surface water flooding will be directed away from the building's entrances and habitable spaces.

3.5 Contamination and Treatment

- 3.5.1 Guidance on contamination hazard levels, and suitable treatment, is given in the SuDS Manual 2015, CIRIA C753. The two sources of pollution the surface water network of this site may experience are rainfall-borne contaminants, and those associated with the residential car parking. In accordance with Table 26.2, these are classified as resulting in *very low* and *low* pollution hazard levels respectively.
- 3.5.2 CIRIA C753 outlines treatment indices in Table 26.3 (CIRIA C753), to quantify the treatment potential of differing SuDS systems as compared to the pollution hazard level of Table 26.2 (CIRIA C753). This table identifies that porous paving systems provide suitable treatment for water polluted with both rainfall borne contaminants and those associated with residential car parking (very low and low pollution hazard levels. The indices method shows filter drains provide sufficient treatment to rainfall borne contaminants from roofs that wouldn't otherwise pass through the porous pavement systems.

4 Foul Water Drainage

4.1 Existing Foul Water System

- 4.1.1 The existing foul water network is assumed to serve the existing village hall only. An existing manhole and 2 no. foul gullies are located adjacent to the eastern elevation of the hall. This is assumed to be a combined sewer, discharging to the Thames Water foul network in Abingdon Road.
- 4.1.2 The existing foul water network will be abandoned following confirmation on-site.
- 4.1.3 Thames Water asset records are shown in Appendix B.
- 4.1.4 A drainage / utilities survey may be necessary to confirm the points above.

4.2 Proposed Foul Water System

- 4.2.1 The northern section of the Site will contain a gravity network serving all buildings, connecting to a proposed adopted sewer within the High Street. This sewer will discharge into the existing Thames Water network approximately 130m from the Site, into the 150mm diameter pipe between manhole references 7602 and 7501.
- 4.2.2 The southern section of the site contains a gravity network serving all buildings. Due to the level differences between both sections, a packaged foul water pumping station is proposed to serve the southern section. The discharge from the pumping station is proposed to connect into the gravity foul network of the northern section, via a new rising main.
- 4.2.3 The concept foul water strategy is presented on the proposed Drainage Layout drawings 332110526-2001-001 and 332110526-2001-002 (Appendix D).

5 Summary

- 5.1.1 Planning permission is sought for a site north-west of Clifton Hampden village, straddling Abingdon Road. The proposals will provide 17 residential units, alongside a new health surgery and improvements to the existing village hall.
- 5.1.2 Both portions of the site are predominantly greenfield. The northern section is arable land with a mixture of active and abandoned allotments. A small portion of the northern section is occupied by the existing Village Hall. The southern section of the Site is currently used as a paddock.
- 5.1.3 The existing village hall is currently served by a small foul water network that is assumed to discharge via gravity to an offsite Thames Water sewer. An existing Thames Water foul rising main is shown to cross the southern section of the site. There is no known existing surface water drainage, hardstanding is assumed to utilise over-the-edge drainage and infiltrate into the ground. Any connections to Thames Water sewers are assumed to discharge at an unrestricted rate.
- 5.1.4 The surface water drainage strategy for the scheme has been designed in accordance with Lead Local Flood Authority guidance. The strategy incorporates SuDS features to provide attenuation and treatment to surface water, to discharges at a maximum of 2 l/s for design rainfall events to an existing watercourse. The presented drainage strategy demonstrates that the site proposals can be drained in a sustainable manner without increasing the risk of flooding to neighbouring properties for events up to and including the 1 in 100 year (plus 40% climate change) rainfall event.
- 5.1.5 Flood exceedance flows show that any potential surface water flooding will be directed away from building entrances and habitable spaces.
- 5.1.6 This surface and foul water drainage strategy has been prepared to demonstrate that the proposed development can meet national and local requirements.

Appendix A Site Location Plan

Appendix B Thames Water Asset Records

Asset location search

Peter Brett Associates First Floor, Southern House 1 Cambridge Terrace OXFORD OX1 1RR

Search address supplied

Village Hall Abingdon Road Clifton Hampden Abingdon OX14 3EG

Your reference	Clifton Hampden

Our reference

ALS/ALS Standard/2021_4385746

Search date

22 March 2021

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Asset location search

Search address supplied: Village Hall, Abingdon Road, Clifton Hampden, Abingdon, OX14 3EG

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and

pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
681E	n/a	n/a
6402	n/a	n/a
681F	n/a	n/a
6403	n/a	n/a
671C	n/a	n/a
671D	n/a	n/a
671F	n/a	n/a
6501	n/a	n/a
671A	n/a	n/a
6803	n/a	n/a
6502	n/a	n/a
6601	n/a	n/a
6801	n/a	n/a
671B	n/a	n/a
7606	n/a	n/a
7804	n/a	n/a
7605	n/a	n/a
7701	n/a	n/a
7501	n/a	n/a
7604	n/a	n/a
751A	n/a	n/a
5403	n/a	n/a
5402	n/a	n/a
5301	n/a	n/a
5404	n/a	n/a
5401	n/a	n/a
681A	n/a	n/a
6401	n/a	n/a
681C	n/a	n/a
681D	n/a	n/a
681G	n/a	n/a
681B	n/a	n/a
681H	n/a	n/a
6804	n/a	n/a
7703	n/a	n/a
7607	n/a	n/a
7602	n/a	n/a
7603	n/a	n/a
7601	n/a	n/a
7805	n/a	n/a
7801	n/a	n/a
7609	n/a	n/a
671G	n/a	n/a
6711	n/a	n/a
771A	n/a	n/a
771B	n/a	n/a
The position of the apparatus shown on this plan	is given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not
shown but their presence should be anticipated. No	liability of any kind whatsoever is accepted by Thames	Water for any error or omission. The actual position
of mains and services must be verified and establish	ed on site before any works are undertaken.	

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Sewer Fittings

Other Symbols

Symbols used on maps which do not fall under other general categories

Change of characteristic indicator (C.O.C.I.) -6 Invert Level < Summit Areas Lines denoting areas of underground surveys, etc. Aareement Operational Site /// Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

 Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Undefined End

Inlet

A

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STERE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Valves

- Manifold
- Customer Supply
- Fire Supply

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix C Greenfield Run-off Rates

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 08/07/2022 09:44	Designed by pbunn	
File	Checked by	Diamage
Innovyze	Source Control 2020.1	
Ī	CP SUDS Mean Annual Flood Input	
Return Period (year: Area (ha	s) 1 SAAR (mm) 600 Urban 0.000 a) 1.000 Soil 0.300 Region Number Region 6 Besults 1/s	
	QBAR Rural 1.5	
	QBAR Urban 1.5	

Q1 year 1.3

Q1 year 1.3 Q30 years 3.4 Q100 years 4.9

Appendix D Proposed Drainage Layout

Stantec

First Floor, Southern House, 1 Cambridge Terrace, Oxford

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS
- . THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE
- . THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE
- ALL DIMENSIONS IN METRES UNLESS STATED OTHERWISE. . ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE.
- . INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC,
- OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS. TOPOGRAPHICAL SURVEY INFORMATION OBTAINED FROM GLANVILLE GROUP DRAWINGS 8000425/4101-4104 REVISION B DATED
- . SITE LAYOUT OBTAINED FROM WOODFIELD BRADY ARCHITECTS
- . CONCEPT DRAINAGE LAYOUT BASED ON THE ASSUMPTION THAT FINISHED ROAD LEVELS WILL BE SET APPROXIMATELY 250mm
- 10.FLOWS DISCHARGING TO EXISTING WATERCOURSE OR DRAINAGE NETWORK, SURFACE WATER RUN-OFF WILL BE E ATTENUATED UP TO AND INCLUDING THE 1 IN 100 YEAR PLUS 40% CLIMATE CHANGE
- 1. SURFACE WATER RUN-OFF WILL BE LIMITED TO THE GREENFIELD
- 2. EXISTING VILLAGE HALL TO BE RETAINED IN THE SE CORNER OF
- 13. DETAILED LEVELS DESIGN AND DRAINAGE LAYOUT SUBJECT TO ARCHITECTS CONFIRMATION OF DRAINAGE CONNECTION POINTS 14. CONNECTION TO EXISTING FOUL AND SURFACE WATER DRAINAGE

P03 GREENFIELD RATE UPDATED		VT	SH	2023.11.02
P02 FOR PLANNING		VT	SH	2022.07.07
P01 FIRST ISSUE		VT	SH	2021.08.18
Issued/Revision		Ву	Appd	YYYY.MM.DD
	VT	BH	SH	2021.08.18
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Revision		Бу	Αр
	VT	BH	Sł
	Dwn.	Dsgn.	Ch

I/Revision		Ву	Appd
	VT	BH	SH
	Dwn.	Dsgn.	Chkd.

		VT	
		Dwn.	Ds
ie Status			
	FOR PLA	NNIN	G

Scale

1:250 @ A1

332110526-2001-001

PROPOSED DRAINAGE LAYOUT

03 GREENFIELD RATE UPDATED		VT	SH	2023.11.02
02 FOR PLANNING		VT	SH	2022.07.07
01 FIRST ISSUE		VT	SH	2021.08.18
sued/Revision		Ву	Appd	YYYY.MM.DD
	VT	BH	SH	2021.08.18
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

P03 GREENFIELD RATE UPDATED		VT	SH	2023.11.02
P02 FOR PLANNING		VT	SH	2022.07.07
P01 FIRST ISSUE		VT	SH	2021.08.18
Issued/Revision		Ву	Appd	YYYY.MM.DD
	VT	BH	SH	2021.08.18
	Dwn.	Dsan.	Chkd.	YYYY.MM.DD

14. CONNECTION TO EXISTING FOUL AND SURFACE WATER DRAIN
NETWORKS SUBJECT TO CCTV SURVEY

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the
- presence of any existing sewers, services, plant or apparatus may affect their operations.
- RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS
- 2. THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE
- 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER
- RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE
- 5. ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE. 6. INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO
- LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC,
- GLANVILLE GROUP DRAWINGS 8000425/4101-4104 REVISION B DATED
- 8. SITE LAYOUT OBTAINED FROM WOODFIELD BRADY ARCHITECTS
- 9. CONCEPT DRAINAGE LAYOUT BASED ON THE ASSUMPTION THAT

FINISHED ROAD LEVELS WILL BE SET APPROXIMATELY 250mm

10.FLOWS DISCHARGING TO EXISTING WATERCOURSE OR DRAINAGE NETWORK, SURFACE WATER RUN-OFF WILL BE E ATTENUATED UP TO AND INCLUDING THE 1 IN 100 YEAR PLUS 40% CLIMATE CHANGE

11. SURFACE WATER RUN-OFF WILL BE LIMITED TO THE GREENFIELD

12. EXISTING VILLAGE HALL TO BE RETAINED IN THE SE CORNER OF

13. DETAILED LEVELS DESIGN AND DRAINAGE LAYOUT SUBJECT TO ARCHITECTS CONFIRMATION OF DRAINAGE CONNECTION POINTS NAGE

P02 FOR PLANNING		VT	SH	2022.07.
P01 FIRST ISSUE		VT	SH	2021.08.
Issued/Revision		Ву	Appd	YYYY.MM
		BH	SH	2021.08.
	Dwn.	Dsgn.	Chkd.	YYYY.MM
Issue Status				

SURFACE WATER MANHOLE SCHEDULE											FOUL	WATER MA	NHOLE SCHE	DULE	
MH NO.	CL	IL	DEPTH	PIPEØ OUT	COVER TYPE	MANHOLE SIZE	MANHOLE TYPE	MH NO.	CL	IL	DEPTH	PIPEØ OUT	COVER TYPE	MANHOLE SIZE	MANHOLE TYPE
SW001	54.65	54.05	0.60m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW001	55.60	55.00	0.60m	150Ø	D400	450Ø	PLASTIC IC
SW002	54.80	53.93	0.87m	100Ø	D400	315Ø	PLASTIC CATCHPIT	FW002	55.60	54.75	0.85m	150Ø	D400	450Ø	PLASTIC IC
SW003	54.70	53.87	0.83m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW003	55.55	54.77	0.78m	100Ø	B125	315Ø	PLASTIC IC
SW004	55.20	54.11	1.09m	100Ø	B125	450Ø	PLASTIC CATCHPIT	FW004	55.55	54.73	0.82m	100Ø	B125	315Ø	PLASTIC IC
SW005	55.20	53.80	1.40m	150Ø	B125	450Ø	PLASTIC CATCHPIT	FW005	55.50	54.65	0.85m	150Ø	D400	450Ø	PLASTIC IC
SW006	70.70	69.30	1.40m	150Ø	D400	450Ø	PLASTIC CATCHPIT	FW006	55.43	54.68	0.75m	100Ø	B125	315Ø	PLASTIC IC
SW007	55.28	53.67	1.61m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW007	55.44	54.65	0.79m	100Ø	B125	315Ø	PLASTIC IC
SW008	55.60	54.09	1.51m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW008	55.40	54.53	0.87m	150Ø	D400	450Ø	PLASTIC IC
SW009	55.60	53.87	1.73m	150Ø	D400	450Ø	PLASTIC CATCHPIT	FW009	55.45	54.61	0.84m	100Ø	B125	315Ø	PLASTIC IC
SW010	55.55	53.92	1.63m	100Ø	D400	315Ø	PLASTIC CATCHPIT	FW010	55.45	54.59	0.86m	100Ø	B125	315Ø	PLASTIC IC
SW011	55.55	53.82	1.73m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW011	55.30	54.43	0.87m	150Ø	D400	450Ø	PLASTIC IC
SW012	55.55	53.87	1.68m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW012	55.20	54.34	0.86m	100Ø	B125	315Ø	PLASTIC IC
SW013	55.55	53.82	1.73m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW013	55.03	54.24	0.79m	150Ø	D400	450Ø	PLASTIC IC
SW014	55.50	53.74	1.76m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW014	55.20	54.30	0.90m	100Ø	B125	315Ø	PLASTIC IC
SW015	55.55	53.76	1.79m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW015	55.20	54.24	0.96m	100Ø	B125	315Ø	PLASTIC IC
SW016	55.45	53.74	1.71m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW016	55.20	54.20	1.00m	100Ø	B125	315Ø	PLASTIC IC
SW017	55.40	53.63	1.77m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW017	54.70	54.09	0.61m	150Ø	D400	450Ø	PLASTIC IC
SW018	55.45	53.75	1.70m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW018	54.80	54.07	0.73m	150Ø	D400	450Ø	PLASTIC IC
SW019	55.30	53.54	1.76m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW019	55.00	54.09	0.91m	150Ø	D400	450Ø	PLASTIC IC
SW020	55.50	53.35	2.15m	225Ø	D400	600Ø	PLASTIC CATCHPIT	FW020	54.70	53.93	0.77m	150Ø	D400	450Ø	PLASTIC IC
SW021	55.50	53.11	2.39m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW021	55.10	54.11	0.99m	150Ø	B125	450Ø	PLASTIC IC
SW022	56.45	52.89	3.56m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW022	54.65	53.84	0.81m	150Ø	B125	450Ø	PLASTIC IC
SW023	55.80	52.66	3.14m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW023	54.50	53.78	0.72m	150Ø	D400	450Ø	PLASTIC IC
SW024	55.73	52.46	3.27m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW101	55.25	54.65	0.60m	100Ø	B125	315Ø	PLASTIC IC
SW025	55.25	52.82	2.43m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW102	55.25	54.40	0.85m	100Ø	B125	315Ø	PLASTIC IC
SW026	55.88	52.67	3.21m	150Ø	D400	450Ø	PLASTIC CATCHPIT	FW103	55.65	54.32	1.33m	150Ø	D400	450Ø	PLASTIC IC
SW027	55.20	52.62	2.58m	100Ø	B125	315Ø	PLASTIC CATCHPIT	FW104	55.20	54.25	0.95m	100Ø	D400	315Ø	PLASTIC IC
SW028	55.20	52.61	2.59m	225Ø	B125	600Ø	PLASTIC CATCHPIT	FW105	55.20	54.18	1.02m	150Ø	D400	450Ø	PLASTIC IC
SW029	55.25	52.56	2.69m	225Ø	B125	600Ø	PLASTIC CATCHPIT								
SW030	55.65	52.46	3.19m	150Ø	B125	450Ø	PLASTIC CATCHPIT								
SW031	55.95	52.14	3.81m	225Ø	D400	600Ø	PLASTIC CATCHPIT								
SW032	56.10	51.92	4.18m	225Ø	B125	1200Ø	PCC CHAMBER								
SW033	54.95	51.62	3.33m	225Ø	D400	600Ø	PLASTIC CATCHPIT								
SW034	54.54	51.35	3.19m	225Ø	D400	600Ø	PLASTIC CATCHPIT								
SW035	52.60	51.05	1.55m	225Ø	D400	600Ø	PLASTIC CATCHPIT					AND INVERT L	EVELS ARE INDIC	ATIVE ONLY.	
SW036	50.80	50.15	0.65m	225Ø	D400	600Ø	PLASTIC CATCHPIT	DETAILED LEVELS DESIGN AND DRAINAGE LAYOUT SUBJECT TO ARCHITECTS CONFIRMATION OF DRAINAGE CONNECTION POINTS							

2

С

В

А

3

Stantec UK Limited OXFORD

First Floor, Southern House, 1 Cambridge Terrace, Oxford OX1 1RR

Tel: +44 1865 410 000

www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

- . IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS SHOULD BE USED.
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
- 3. INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC, OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS.

P02 FOR PLANNING		VT	SH	2022.07.07
P01 FIRST ISSUE		VT	SH	2021.08.18
Issued/Revision		Ву	Appd	YYYY.MM.DD
	VT	CA	SH	2021.08.18
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

FOR PLANNING

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Client/Project THOMAS HOMES

CLIFTON HAMPDEN

Title

DRAINAGE MANHOLE SCHEDULES

Project No.

Revision P02

332110526

Scale A2

Drawing No.

332110526-2001-003

Appendix E Drainage Standard Details

Stantec UK Limited OXFORD

First Floor, Southern House, 1 Cambridge Terrace, Oxford OX1 1RR

Tel: +44 1865 410 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- . IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS SHOULD BE USED.
- THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE REPRODUCED IN COLOUR.
- 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
- 4. ALL DIMENSIONS IN MILLIMETRES UNLESS STATED OTHERWISE.
- 5. ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE. 6. INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC, OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS.

P01 FIRST ISSUE		PB	SH	2022.07.07
Issued/Revision		Ву	Appd	YYYY.MM.DE
	PB	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DE

Issue Status

TYPICAL PLAN

Fixing lugs with masonry

stud anchor fixing bolts.

Neoprene rubber gasket.

– 150mm I/D outlet

(minimum).

- Orifice plate flow control fitted

with pivoting by-pass door.

Concrete mounting block.

 \bigcirc

FOR PLANNING

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Client/Project THOMAS HOMES

CLIFTON HAMPDEN

Title STANDARD DETAILS

SHEET 1 OF 2

Project No. 332110526

Scale AS SHOWN @ A1

Revision P01

Drawing No.

		1	2	
D				
	-			
			_	
			Permeable sub base	
			Geogrid	
			Permeable sub base	
			within infiltration trench	
~				
C			<u> <u> </u></u>	Carri
			Geotextile —	0000000
	_			
В				
]			
900-1002-0				
25011265				
laa lawg				
rawings/c				
mpaen/a				
926011260				
projects				
-uui.corp.				
V/oxi-vibs				
NAL SHEEI				

TYPICAL SECTION

3

Stantec UK Limited OXFORD

First Floor, Southern House, 1 Cambridge Terrace, Oxford OX1 1RR

Tel: +44 1865 410 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- 1. IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS SHOULD BE USED.
- 2. THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE REPRODUCED IN COLOUR.
- 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
- 4. ALL DIMENSIONS IN MILLIMETRES UNLESS STATED OTHERWISE.
- ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE.
 INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC, OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS.

PO1 FIRST ISSUE		PB	SH	2022.07.07
Issued/Revision		Ву	Appd	YYYY.MM.DD
	PB	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

FOR PLANNING

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Client/Project THOMAS HOMES

CLIFTON HAMPDEN

STANDARD DETAILS

SHEET 2 OF 2

Project No. 332110526

Scale AS SHOWN @ A1

Revision **P01**

Title

Appendix F Microdrainage Calculation Results

Stantec UK Ltd					
Caversham Bridge House	Abingdon Road, Clifton Hampden				
Waterman Place	Thomas Homes				
Reading, RG1 8DN	Rev A	Micco			
Date 20/10/2023	Designed by Jasper Syms				
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Digitige			
Innovyze	Network 2020.1				

STORM SEWER DESIGN by the Modified Rational Method

<u>Design Criteria for Storm</u>

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR	Rainfall	Model	- England and Wales	
Return Period	(years)	100	PIMP (%)	100
M5	-60 (mm)	20.000	Add Flow / Climate Change (%)	0
	Ratio R	0.400	Minimum Backdrop Height (m)	0.600
Maximum Rainfall	(mm/hr)	550	Maximum Backdrop Height (m)	1.500
Maximum Time of Concentratio	n (mins)	30	Min Design Depth for Optimisation (m)	0.500
Foul Sewage	(l/s/ha)	0.000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runof	f Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Time Area Diagram for Storm

Time
(mins)Area
(ha)Time
(mins)Area
(mins)Time
(mins)Area
(mins)0-40.0244-80.2908-120.273Total
Area
Contributing(ha) = 0.5870.2100.024

Network Design Table for Storm

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.000	12.756	0.090	141.7	0.050	4.00		0.0	0.600	0	225	Pipe/Conduit	•
1.001	16.554	0.110	150.5	0.009	0.00		0.0	0.600	0	225	Pipe/Conduit	Ă
1.002	13.377	0.065	205.8	0.038	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
2.000	49.514	0.330	150.0	0.159	4.00		0.0	0.600	0	225	Pipe/Conduit	٥
1.003	28.820	0.192	150.1	0.161	0.00		0.0	0.600	0	225	Pipe/Conduit	<u> </u>
1.004	20.419	0.136	150.1	0.027	0.00		0.0	0.600	0	225	Pipe/Conduit	Ă
1.005	16.483	0.110	149.8	0.031	0.00		0.0	0.600	0	225	Pipe/Conduit	Ă
1.006	31.466	0.210	149.8	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ě

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	174.28	4.19	53.820	0.050	0.0	0.0	0.0	1.10	43.6	23.5
1.001	170.76	4.45	53.730	0.058	0.0	0.0	0.0	1.06	42.3	27.0
1.002	167.60	4.70	53.620	0.097	0.0	0.0	0.0	0.91	36.1«	43.9
2.000	166.65	4.77	53.870	0.159	0.0	0.0	0.0	1.07	42.3«	71.6
1.003	161.28	5.23	53.540	0.417	0.0	0.0	0.0	1.06	42.3«	182.0
1.004	157.73	5.55	53.350	0.444	0.0	0.0	0.0	1.06	42.3«	189.5
1.005	155.01	5.80	53.200	0.474	0.0	0.0	0.0	1.07	42.4«	199.1
1.006	150.14	6.30	53.110	0.474	0.0	0.0	0.0	1.07	42.4«	199.1

Stantec UK Ltd		Page 2
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.007	33.872	0.226	149.9	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	•
1.008	55.984	0.315	177.7	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	0
3.000	23.107	0.395	58.5	0.013	4.00		0.0	0.600	0	150	Pipe/Conduit	•
4.000	31.381	0.316	99.3	0.018	4.00		0.0	0.600	0	150	Pipe/Conduit	8
3.001	24.351	0.162	150.3	0.019	0.00		0.0	0.600	0	225	Pipe/Conduit	0
1.009	35.211	0.220	160.1	0.024	0.00		0.0	0.600	0	300	Pipe/Conduit	A
1.010	16.423	0.130	126.3	0.037	0.00		0.0	0.600	0	150	Pipe/Conduit	Ă
1.011	39.436	0.219	180.1	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	Ă
1.012	75.152	0.550	136.6	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ă
1.013	60.662	1.011	60.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.007 1.008	145.30 137.51	6.83 7.78	52.900 52.660	0.474 0.474	0.0	0.0	0.0	1.07 0.98	42.4« 38.9«	199.1 199.1
3.000	172.93	4.29	55.200	0.013	0.0	0.0	0.0	1.32	23.3	6.1
4.000	169.91	4.52	55.230	0.018	0.0	0.0	0.0	1.01	17.8	8.5
3.001	165.11	4.90	52.410	0.051	0.0	0.0	0.0	1.06	42.3	22.7
1.009	134.02	8.25	52.270	0.550	0.0	0.0	0.0	1.24	87.7«	199.5
1.010	131.88	8.56	52.050	0.587	0.0	0.0	0.0	0.89	15.8«	209.6
1.011	127.28	9.24	51.920	0.587	0.0	0.0	0.0	0.97	38.6«	209.6
1.012	120.26	10.36	51.700	0.587	0.0	0.0	0.0	1.12	44.4«	209.6
1.013	117.79	10.79	51.000	0.587	0.0	0.0	0.0	2.34	258.8	209.6

Stantec UK Ltd		Page 3
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamaye
Innovyze	Network 2020.1	1

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	55.500	1.680	Open	Manhole	1200	1.000	53.820	225				
2	55.500	1.770	Open	Manhole	1200	1.001	53.730	225	1.000	53.730	225	
2	55.500	1.880	Open	Manhole	1200	1.002	53.620	225	1.001	53.620	225	
2	55.500	1.630	Open	Manhole	1200	2.000	53.870	225				
2	55.500	1.960	Open	Manhole	1200	1.003	53.540	225	1.002	53.555	225	15
									2.000	53.540	225	
3	55.500	2.152	Open	Manhole	1200	1.004	53.350	225	1.003	53.348	225	
4	55.500	2.300	Open	Manhole	1200	1.005	53.200	225	1.004	53.214	225	14
5	55.500	2.410	Open	Manhole	1200	1.006	53.110	225	1.005	53.090	225	
6	55.500	2.600	Open	Manhole	1200	1.007	52.900	225	1.006	52.900	225	
7	55.800	3.140	Open	Manhole	1200	1.008	52.660	225	1.007	52.674	225	14
8	55.800	0.600	Open	Manhole	1200	3.000	55.200	150				
10	55.800	0.570	Open	Manhole	1200	4.000	55.230	150				
9	55.800	3.390	Open	Manhole	1200	3.001	52.410	225	3.000	54.805	150	2320
									4.000	54.914	150	2429
8	55.800	3.552	Open	Manhole	1200	1.009	52.270	300	1.008	52.345	225	
									3.001	52.248	225	
9	55.800	3.750	Open	Manhole	1200	1.010	52.050	150	1.009	52.050	300	
10	55.800	3.880	Open	Manhole	1200	1.011	51.920	225	1.010	51.920	150	
11	54.950	3.250	Open	Manhole	1200	1.012	51.700	225	1.011	51.701	225	1
12	53.050	2.050	Open	Manhole	1350	1.013	51.000	375	1.012	51.150	225	
	51.500	1.511	Open	Manhole	0		OUTFALL		1.013	49.989	375	
	1	1	1		1	1			1			1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
1	454536.389	195623.526	454536.389	195623.526	Required	•
2	454546.489	195631.317	454546.489	195631.317	Required	
2	454562.468	195635.644	454562.468	195635.644	Required	
2	454623.653	195648.359	454623.653	195648.359	Required	-
2	454575.844	195635.479	454575.844	195635.479	Required	
3	454582.806	195607.512	454582.806	195607.512	Required	-
4	454563.195	195601.826	454563.195	195601.826	Required	•

Stantec UK Ltd		Page 4
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	*

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
5	454547.413	195597.068	454547.413	195597.068	Required	
6	454517.242	195588.133	454517.242	195588.133	Required	•
7	454528.266	195556.105	454528.266	195556.105	Required	۱ ۱
8	454503.433	195506.555	454503.433	195506.555	Required	•
10	454450.982	195493.907	454450.982	195493.907	Required	•
9	454480.388	195504.862	454480.388	195504.862	Required	
8	454479.180	195529.183	454479.180	195529.183	Required	
9	454448.313	195512.241	454448.313	195512.241	Required	_ i
10	454434.040	195504.118	454434.040	195504.118	Required	
11	454396.210	195492.978	454396.210	195492.978	Required	
12	454332.212	195453.582	454332.212	195453.582	Required	, , , , , , , , , , , , , , , , , , ,
	454280.515	195421.844			No Entry	

Stantec UK Ltd		Page 5
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(11111)	Name	(m)	(m)	(m)	Connection	(nun)
1.000	0	225	1	55.500	53.820	1.455	Open Manhole	1200
1.001	0	225	2	55.500	53.730	1.545	Open Manhole	1200
1.002	0	225	2	55.500	53.620	1.655	Open Manhole	1200
2.000	0	225	2	55.500	53.870	1.405	Open Manhole	1200
1.003	0	225	2	55.500	53.540	1.735	Open Manhole	1200
1.004	0	225	3	55.500	53.350	1.925	Open Manhole	1200
1.005	0	225	4	55.500	53.200	2.075	Open Manhole	1200
1.006	0	225	5	55.500	53.110	2.165	Open Manhole	1200
1.007	0	225	6	55.500	52.900	2.375	Open Manhole	1200
1.008	0	225	7	55.800	52.660	2.915	Open Manhole	1200
3.000	0	150	8	55.800	55.200	0.450	Open Manhole	1200
4.000	0	150	10	55.800	55.230	0.420	Open Manhole	1200
3.001	0	225	9	55.800	52.410	3.165	Open Manhole	1200
1.009	0	300	8	55.800	52.270	3.230	Open Manhole	1200
1.010	0	150	9	55.800	52.050	3.600	Open Manhole	1200
1.011	0	225	10	55.800	51.920	3.655	Open Manhole	1200
1.012	0	225	11	54.950	51.700	3.025	Open Manhole	1200
1.013	0	375	12	53.050	51.000	1.675	Open Manhole	1350

Downstream Manhole

PN	Length	Slope	МН	C.Level	I.Level	D.Depth	МН	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	12.756	141.7	2	55.500	53.730	1.545	Open Manhole	1200
1.001	16.554	150.5	2	55.500	53.620	1.655	Open Manhole	1200
1.002	13.377	205.8	2	55.500	53.555	1.720	Open Manhole	1200
2.000	49.514	150.0	2	55.500	53.540	1.735	Open Manhole	1200
1.003	28.820	150.1	3	55.500	53.348	1.927	Open Manhole	1200
1.004	20.419	150.1	4	55.500	53.214	2.061	Open Manhole	1200
1.005	16.483	149.8	5	55.500	53.090	2.185	Open Manhole	1200
1.006	31.466	149.8	6	55.500	52.900	2.375	Open Manhole	1200
1.007	33.872	149.9	7	55.800	52.674	2.901	Open Manhole	1200
1.008	55.984	177.7	8	55.800	52.345	3.230	Open Manhole	1200
3.000	23.107	58.5	9	55.800	54.805	0.845	Open Manhole	1200
4.000	31.381	99.3	9	55.800	54.914	0.736	Open Manhole	1200
3.001	24.351	150.3	8	55.800	52.248	3.327	Open Manhole	1200
1.009	35.211	160.1	9	55.800	52.050	3.450	Open Manhole	1200
1.010	16.423	126.3	10	55.800	51.920	3.730	Open Manhole	1200
1.011	39.436	180.1	11	54.950	51.701	3.024	Open Manhole	1200
1.012	75.152	136.6	12	53.050	51.150	1.675	Open Manhole	1350
1.013	60.662	60.0		51.500	49.989	1.136	Open Manhole	0

Stantec UK Ltd		Page 6
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	Desinado
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	User	_	95	0.022	0.020	0.020
	User	-	90	0.033	0.029	0.050
1.001	User	-	90	0.010	0.009	0.009
1.002	User	-	95	0.012	0.011	0.011
	User	-	90	0.006	0.006	0.017
	User	-	90	0.012	0.011	0.027
	User	-	95	0.012	0.011	0.038
2.000	User	-	95	0.072	0.069	0.069
	User	-	95	0.032	0.030	0.099
	User	-	90	0.066	0.059	0.159
1.003	User	-	92	0.035	0.032	0.032
	User	-	93	0.055	0.051	0.083
	User	-	90	0.069	0.062	0.145
	User	-	90	0.015	0.013	0.158
	User	-	90	0.004	0.003	0.161
1.004	User	-	90	0.028	0.025	0.025
	User	-	90	0.002	0.002	0.027
1.005	User	-	90	0.034	0.031	0.031
1.006	-	-	100	0.000	0.000	0.000
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
3.000	User	-	90	0.015	0.013	0.013
4.000	User	-	90	0.020	0.018	0.018
3.001	User	-	90	0.022	0.019	0.019
1.009	User	-	90	0.023	0.021	0.021
	User	-	90	0.004	0.004	0.024
1.010	User	-	90	0.042	0.037	0.037
1.011	-	-	100	0.000	0.000	0.000
1.012	-	-	100	0.000	0.000	0.000
1.013	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.641	0.587	0.587

Stantec UK Ltd		Page 7
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Mirro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Network Classifications for Storm

PN	USMH	Pipe	Min Cover	Max Cover	Ріре Туре	MH	MH	MH Ring	МН Туре
	Name	Dia	Depth	Depth		Dia	Width	Depth	
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
1.000	1	225	1.455	1.545	Unclassified	1200	0	1.455	Unclassified
1.001	2	225	1.545	1,655	Unclassified	1200	0	1.545	Unclassified
1.002	2	225	1.655	1.720	Unclassified	1200	0	1.655	Unclassified
2.000	2	225	1.405	1.735	Unclassified	1200	0	1.405	Unclassified
1.003	2	225	1.735	1.927	Unclassified	1200	0	1.735	Unclassified
1.004	3	225	1.925	2.061	Unclassified	1200	0	1.925	Unclassified
1.005	4	225	2.075	2.185	Unclassified	1200	0	2.075	Unclassified
1.006	5	225	2.165	2.375	Unclassified	1200	0	2.165	Unclassified
1.007	6	225	2.375	2.901	Unclassified	1200	0	2.375	Unclassified
1.008	7	225	2.915	3.230	Unclassified	1200	0	2.915	Unclassified
3.000	8	150	0.450	0.845	Unclassified	1200	0	0.450	Unclassified
4.000	10	150	0.420	0.736	Unclassified	1200	0	0.420	Unclassified
3.001	9	225	3.165	3.327	Unclassified	1200	0	3.165	Unclassified
1.009	8	300	3.230	3.450	Unclassified	1200	0	3.230	Unclassified
1.010	9	150	3.600	3.730	Unclassified	1200	0	3.600	Unclassified
1.011	10	225	3.024	3.655	Unclassified	1200	0	3.655	Unclassified
1.012	11	225	1.675	3.025	Unclassified	1200	0	3.025	Unclassified
1.013	12	375	1.136	1.675	Unclassified	1350	0	1.675	Unclassified

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	Ι.	Level (m)	(mm)	(mm)

1.013 51.500 49.989 50.150 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 5 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfall Model		FSR		Profile	Туре	Summer
Return	Period (years)		100		Cv (Su	mmer)	0.750
	Region	England	and Wales		Cv (Wi	nter)	0.840
	M5-60 (mm)		20.000	Storm	Duration (mins)	30
	Ratio R		0.400				

				Dese	0
Stantec UK Ltd				Page	8
Caversham Bridge House	Abingdon Road,	Clifton Hampo	den		
Waterman Place	Thomas Homes				-
Reading, RG1 8DN	Rev A			Mir	
Date 20/10/2023	Designed by Jas	per Syms			
File NETWORK MODEL 2.MDX	Checked by Simo	n Hudson		DIC	inage
Innovyze	Network 2020.1				
<u>Onlin</u> <u>Hydro-Brake® Optimum Mank</u>	e Controls for S nole: 10, DS/PN:	<u>torm</u> 1.011, Volum	ne (m³): 4.	<u>7</u>	
Un	it Reference MD-SHE	-0050-2100-3880	2100		
Desig	n Flow (l/s)		2.1		
20013.	Flush-Flo™	Calcu	lated		
	Objective Minim	ise upstream st	orage		
	Application	Su	irface		
Su	mp Available		Yes		
D	iameter (mm)	-	50		
Inve. Minimum Outlot Dino D	rt Level (m)	5	75		
Suggested Manhole D	iameter (mm)		1200		
	101110001 (1111)		1200		
Control Points Head (m) Fl	Low (l/s) Cont	rol Points	Head (m) F	low (l/s)	
Design Point (Calculated) 3.880	2.1	Kick-Flo	® 0.443	0.8	
Flush-Flo™ 0.217	1.0 Mean Flow	over Head Range	e –	1.5	
The hydrological calculations have been base	d on the Head/Disch	arge relationsh	in for the H	vdro-Brak	on ontimum
as specified. Should another type of control	l device other than	a Hydro-Brake	Optimum® be	utilised	then these
storage routing calculations will be invalid	ated				
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth	epth (m) Flow (l/s)	Depth (m) Flow	w (l/s) Deptl	h (m) Flo	w (l/s)
0.100 0.9 0.800 1.0	2.000 1.5	4.000	2.1	7.000	2.8
	0 0 0 0 1 0	4 5 0 0		7 500	0 0

0.100 0	.9 (0.800	1.0	2.000	1.5	4.000	2.1	7.000	2.8
0.200 1	.0	L.000	1.1	2.200	1.6	4.500	2.2	7.500	2.8
0.300 0	.9 2	L.200	1.2	2.400	1.7	5.000	2.4	8.000	2.9
0.400 0	.9	L.400	1.3	2.600	1.7	5.500	2.5	8.500	3.0
0.500 0	.8	L.600	1.4	3.000	1.9	6.000	2.6	9.000	3.1
0.600 0	.9	1.800	1.5	3.500	2.0	6.500	2.7	9.500	3.2

Stantec UK Ltd		Page 9
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Mirro
Date 20/10/2023	Designed by Jasper Syms	Drainage
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	bidindge
Innovyze	Network 2020.1	
Storage	e Structures for Storm	
Porous Car Pa	ark Manhole: 2, DS/PN: 2.000	
Infiltration Coefficient Base Membrane Percolation Max Percolation Safet	e (m/hr) 0.00000 Width (m) 5.0 (mm/hr) 1000 Length (m) 186.0 on (1/s) 258.3 Slope (1:X) 0.0 y Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3	
Invert L	evel (m) 54.895 Membrane Depth (mm) 0	
Porous Car Pa	ark Manhole: 2, DS/PN: 1.003	
Infiltration Coefficient Base Membrane Percolation Max Percolati Safet Invert L	e (m/hr) 0.00000 Width (m) 5.0 (mm/hr) 1000 Length (m) 110.0 on (1/s) 152.8 Slope (1:X) 0.0 y Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 evel (m) 54.795 Membrane Depth (mm) 0	
Porous Car Pa	ark Manhole: 3, DS/PN: 1.004	
Infiltration Coefficient Bas Membrane Percolation Max Percolati Safet Invert I <u>Porous Car Pa</u>	se (m/hr) 0.00000 Width (m) 5.0 n (mm/hr) 1000 Length (m) 52.0 lon (1/s) 72.2 Slope (1:X) 0.0 cy Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Level (m) 54.795 Membrane Depth (mm) 0	
Infiltration Coefficient Bas	se (m/hr) 0.00000 Width (m) 16.0	
Membrane Percolation Max Percolati Safet Invert I	n (mm/hr) 1000 Length (m) 21.1 con (l/s) 93.8 Slope (1:X) 0.0 cy Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 evel (m) 54.795 Membrane Depth (mm) 0	
Complex N	Manhole: 9, DS/PN: 1.010	
	Cellular Storage	
Inv Infiltration Coefficier Infiltration Coefficier	vert Level (m) 54.970 Safety Factor 2.0 It Base (m/hr) 0.00000 Porosity 0.95 It Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)
0.000 140.0 140.0 0.40	0 140.0 159.2 0.401 0.0	159.2
	<u>Porous Car Park</u>	
Infiltration Coefficient Bas Membrane Percolation Max Percolati Safet Invert I	se (m/hr) 0.00000 Width (m) 16.0 n (mm/hr) 1000 Length (m) 23.6 con (1/s) 104.9 Slope (1:X) 0.0 cy Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 evel (m) 55.370 Membrane Depth (mm) 0	
01	982-2020 Innovyze	

Stantec UK Ltd		Page 10
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
1.000	1	0.500
1.001	2	0.500
1.002	2	0.500
2.000	2	0.500
1.003	2	0.500
1.004	3	0.500
1.005	4	0.500
1.006	5	0.500
1.007	6	0.500
1.008	7	0.500
3.000	8	0.500
4.000	10	0.500
3.001	9	0.500
1.009	8	0.500
1.010	9	0.500
1.011	10	0.500
1.012	11	0.500
1.013	12	0.500

Stantec UK Ltd		Page 11
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Simulation CriteriaAreal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 5 Number of Real Time Controls 0

S	ynthetic Rain	fall Deta	ails		
Rainfall Model	FSR M5	-60 (mm)	20.000 C	v (Summer)	1.000
Region England	and Wales	Ratio R	0.400 C	v (Winter)	1.000
Margin for Flood Risk	Warning (mm)			3	300.0
Anal	ysis Timestep	2.5 Seco	ond Increm	ment (Exter	nded)
	DTS Status				ON
	DVD Status				OFF
I	nertia Status				OFF
Profile(s)				Summer	r and Winter
Duration(s) (mins)	15, 30, 60,	120, 180,	240, 360), 480, 600), 720, 960,
	1440, 21	60, 2880,	4320, 5	760, 7200,	8640, 10080
Return Period(s) (years)					1, 30, 100
Climate Change (%)					0, 0, 0

WARNING: Half Drain Time has not been calculated as the structure is too full.

													Water	Surcharged	Flooded
	US/MH			Return	Climate	Firs	st (X)	First	(Y)	First	(Z)	Overflow	Level	Depth	Volume
PN	Name	Sto	rm	Period	Change	Surc	charge	Flo	od	Overf	low	Act.	(m)	(m)	(m³)
1 000	1	960 51	ummor	1	±0%	1/30	Summor						54 900	0 955	0 000
1 001	1	900 30		1	+0%	1/15	Summer						54.900	0.005	0.000
1 0001	2	900 SL	unnier	1	+0%	1/15	Summer						54.900	0.945	0.000
1.002	2	960 St	ummer	T	+0%	1/15	Summer						54.899	1.054	0.000
2.000	2	960 St	ummer	1	+0%	1/30	Summer						54.900	0.805	0.000
1.003	2	960 St	ummer	1	+0%	1/15	Summer						54.899	1.134	0.000
1.004	3	960 St	ummer	1	+0%	1/15	Summer						54.896	1.321	0.000
1.005	4	960 St	ummer	1	+0%	1/15	Summer						54.893	1.468	0.000
1.006	5	960 St	ummer	1	+0%	1/15	Summer						54.890	1.555	0.000
1.007	6	960 St	ummer	1	+0%	1/15	Summer						54.886	1.761	0.000
1.008	7	960 St	ummer	1	+0%	1/15	Summer						54.882	1.997	0.000
3.000	8	15 St	ummer	1	+0%								55.234	-0.116	0.000
4.000	10	15 Su	ummer	1	+0%								55.277	-0.103	0.000
3.001	9	180 St	ummer	1	+0%	1/15	Summer						54.889	2.254	0.000
1.009	8	180 St	ummer	1	+0%	1/15	Summer						54.884	2.314	0.000
1.010	9	180 St	ummer	1	+0%	1/15	Summer						54.884	2.684	0.000
1.011	10	180 St	ummer	1	+0%	1/15	Summer						54.877	2.732	0.000
1.012	11	180 St	ummer	1	+0%								51.730	-0.195	0.000
1.013	12	180 St	ummer	1	+0%								51.014	-0.361	0.000

PI	US/ N Na	'MH me	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.0	00	1	0.02			0.9	SURCHARGED	
1.0	01	2	0.03			1.0	SURCHARGED	
1.0	02	2	0.05			1.7	SURCHARGED	
2.0	00	2	0.07		133	2.9	SURCHARGED	
				©1982-	2020 Inno	vyze		

Stantec UK Ltd						
Caversham Bridge House	Abingdon Road, Clifton Hampden					
Waterman Place	Thomas Homes					
Reading, RG1 8DN	Rev A	Micro				
Date 20/10/2023	Designed by Jasper Syms					
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage				
Innovyze	Network 2020.1	1				

	US/MH	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
1.003	2	0.12		419	4.6	SURCHARGED	
1.004	3	0.11		437	4.4	SURCHARGED	
1.005	4	0.11		419	4.3	SURCHARGED	
1.006	5	0.10			4.0	SURCHARGED	
1.007	6	0.09			3.4	SURCHARGED	
1.008	7	0.07			2.8	SURCHARGED	
3.000	8	0.12			2.6	OK	
4.000	10	0.21			3.7	OK	
3.001	9	0.06			2.3	SURCHARGED	
1.009	8	0.06			4.5	SURCHARGED	
1.010	9	0.23			3.4	SURCHARGED	
1.011	10	0.05			1.8	SURCHARGED	
1.012	11	0.04			1.8	OK	
1.013	12	0.01			1.8	OK	

Stantec UK Ltd		Page 13
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	•

Simulation Criteria Areal Reduction Factor 1.000 $\,$ Additional Flow - % of Total Flow 0.000 $\,$ MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 5 Number of Real Time Controls 0

Synthe	etic Rain	fall Deta	ails				
Rainfall Model	FSR M5	-60 (mm)	20.000	Cv (S	Summer)	1.000	
Region England and	Wales	Ratio R	0.400	Cv (V	Vinter)	1.000	
Margin for Flood Risk War	ning (mm)				3	00.0	
Analysis	Timestep	2.5 Sec	ond Incr	rement	: (Exten	ided)	
D	CS Status					ON	
יס		OFF					
Inert	ia Status					OFF	
Profile(s)					Summer	and Wi	nter
Duration(s) (mins) 15,	30, 60, 1440, 21	120, 180, 60, 2880,	, 240, 3 , 4320,	60, 4 5760,	80, 600 7200,	, 720, 8640, 1	960, 0080
Return Period(s) (years) Climate Change (%)						1, 30, 0,	100 0, 0

									Water	Surcharged	Flooded
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
1.000	1	960 Winter	30	+0읭	1/30 Summer				55.124	1.079	0.000
1.001	2	960 Winter	30	+0%	1/15 Summer				55.124	1.169	0.000
1.002	2	960 Winter	30	+0%	1/15 Summer				55.123	1.278	0.000
2.000	2	960 Winter	30	+0%	1/30 Summer				55.124	1.029	0.000
1.003	2	960 Winter	30	+0%	1/15 Summer				55.123	1.358	0.000
1.004	3	960 Winter	30	+0%	1/15 Summer				55.119	1.544	0.000
1.005	4	960 Winter	30	+0%	1/15 Summer				55.116	1.691	0.000
1.006	5	960 Winter	30	+0%	1/15 Summer				55.113	1.778	0.000
1.007	6	960 Winter	30	+0%	1/15 Summer				55.109	1.984	0.000
1.008	7	960 Winter	30	+0%	1/15 Summer				55.105	2.220	0.000
3.000	8	15 Summer	30	+0%					55.255	-0.095	0.000
4.000	10	15 Summer	30	+0%					55.307	-0.073	0.000
3.001	9	960 Winter	30	+0읭	1/15 Summer				55.100	2.465	0.000
1.009	8	960 Winter	30	+0읭	1/15 Summer				55.100	2.530	0.000
1.010	9	960 Winter	30	+0%	1/15 Summer				55.098	2.898	0.000
1.011	10	720 Summer	30	+0응	1/15 Summer				55.096	2.951	0.000
1.012	11	960 Winter	30	+0%	,				51.730	-0.195	0.000
1.013	12	960 Winter	30	+0%					51.014	-0.361	0.000

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	0.03			1.3	SURCHARGED	
1.001	2	0.04			1.5	SURCHARGED	
1.002	2	0.08			2.4	SURCHARGED	
2.000	2	0.08		820	3.4	SURCHARGED	
1.003	2	0.10			3.9	SURCHARGED	
1.004	3	0.09			3.5	SURCHARGED	
1.005	4	0.09			3.3	SURCHARGED	
			©1982-	-2020 Inno	vyze		

Stantec UK Ltd						
Caversham Bridge House	Abingdon Road, Clifton Hampden					
Waterman Place	Thomas Homes					
Reading, RG1 8DN	Rev A	Micro				
Date 20/10/2023	Designed by Jasper Syms					
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage				
Innovyze	Network 2020.1	1				

PN	US/MH Name	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.006	5	0.08			3.2	SURCHARGED	
1.007	6	0.07			2.8	SURCHARGED	
1.008	7	0.06			2.2	SURCHARGED	
3.000	8	0.29			6.4	OK	
4.000	10	0.53			9.0	OK	
3.001	9	0.03			1.3	SURCHARGED	
1.009	8	0.03			2.7	SURCHARGED	
1.010	9	0.15		608	2.2	SURCHARGED	
1.011	10	0.05			1.9	SURCHARGED	
1.012	11	0.04			1.9	OK	
1.013	12	0.01			1.9	OK	

Stantec UK Ltd						
Caversham Bridge House	Abingdon Road, Clifton Hampden					
Waterman Place	Thomas Homes					
Reading, RG1 8DN	Rev A	Micro				
Date 20/10/2023	Designed by Jasper Syms					
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diginarie				
Innovyze	Network 2020.1					

Simulation CriteriaAreal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 5 Number of Real Time Controls 0

<u>S</u>	<u>ynthetic Rair</u>	<u>ifall Deta</u>	<u>ails</u>							
Rainfall Model	FSR M5	5-60 (mm)	20.000 Cv	(Summer)	1.000					
Region England	and Wales	Ratio R	0.400 Cv	(Winter)	1.000					
Margin for Flood Risk	Warning (mm)			3	300.0					
Analysis Timestep 2.5 Second Increment (Extended)										
		ON								
			OFF							
I	nertia Status	3			OFF					
Profile(s)				Summer	and Winter					
Duration(s) (mins)	15, 30, 60,	120, 180	, 240, 360	, 480, 600), 720, 960,					
	1440, 21	60, 2880	, 4320, 57	60, 7200,	8640, 10080					
Return Period(s) (years)					1, 30, 100					
Climate Change (%)					0, 0, 0					

WARNING: Half Drain Time has not been calculated as the structure is too full.

											Water	Surcharged	Flooded
	US/MH		Return	Climate	Firs	st (X)	First (Y)	First	(Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surc	charge	Flood	Overf	low	Act.	(m)	(m)	(m³)
1 000	1	960 Wintor	100	±0%	1/30	Summor					55 211	1 100	0 000
1 001	1	960 Winter	100	+0%	1/15	Summor					55 242	1 200	0.000
1.001	2	960 WINCEL	100	+0%	1/15	Summer					55.245	1.200	0.000
1.002	2	960 Winter	100	+0%	1/15	Summer					55.243	1.398	0.000
2.000	2	960 Winter	100	+0%	1/30	Summer					55.244	1.149	0.000
1.003	2	960 Winter	100	+0%	1/15	Summer					55.242	1.477	0.000
1.004	3	960 Winter	100	+0%	1/15	Summer					55.239	1.664	0.000
1.005	4	960 Winter	100	+0%	1/15	Summer					55.236	1.811	0.000
1.006	5	960 Winter	100	+0읭	1/15	Summer					55.233	1.898	0.000
1.007	6	960 Winter	100	+0읭	1/15	Summer					55.229	2.104	0.000
1.008	7	960 Winter	100	+0%	1/15	Summer					55.224	2.339	0.000
3.000	8	15 Summer	100	+0%							55.263	-0.087	0.000
4.000	10	15 Summer	100	+0%							55.321	-0.059	0.000
3.001	9	960 Winter	100	+0%	1/15	Summer					55.219	2.584	0.000
1.009	8	960 Winter	100	+0%	1/15	Summer					55.219	2.649	0.000
1.010	9	960 Winter	100	+0%	1/15	Summer					55.217	3.017	0.000
1.011	10	960 Summer	100	+0%	1/15	Summer					55.215	3.070	0.000
1.012	11	960 Winter	100	+0%							51.730	-0.195	0.000
1.013	12	960 Winter	100	+0%							51.014	-0.361	0.000

PN	US/MH Name	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded	
1.000	1	0.04			1.6	FLOOD RISK		
1.001	2	0.05			1.9	FLOOD RISK		
1.002	2	0.10			3.1	FLOOD RISK		
2.000	2	0.09			3.6	FLOOD RISK		
			©1982-	-2020 Inno	vyze			

Stantec UK Ltd		Page 16
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	1

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
1.003	2	0.10			4.0	FLOOD RISK	
1.004	3	0.08			3.2	FLOOD RISK	
1.005	4	0.08			3.2	FLOOD RISK	
1.006	5	0.08			3.1	FLOOD RISK	
1.007	6	0.07			2.7	FLOOD RISK	
1.008	7	0.07			2.5	SURCHARGED	
3.000	8	0.37			8.3	OK	
4.000	10	0.68			11.7	OK	
3.001	9	0.04			1.7	SURCHARGED	
1.009	8	0.04			3.4	SURCHARGED	
1.010	9	0.15			2.2	SURCHARGED	
1.011	10	0.05			1.9	SURCHARGED	
1.012	11	0.04			1.9	OK	
1.013	12	0.01			1.9	OK	

Stantec UK Ltd		Page 1
Caversham Bridge House	Abingdon Road, Clifton Hampden	
Waterman Place	Thomas Homes	
Reading, RG1 8DN	Rev A	Micro
Date 20/10/2023	Designed by Jasper Syms	
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation CriteriaAreal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 5 Number of Real Time Controls 0

<u>S</u>	ynthetic Rainf	<u>all Detai</u>	ls						
Rainfall Model	FSR M5-	60 (mm) 2	0.000 Cv	(Summer)	1.000				
Region England	and Wales 1	Ratio R	0.400 Cv	(Winter)	1.000				
Margin for Flood Risk	Warning (mm)			3	00.0				
Analysis Timestep 2.5 Second Increment (Extended)									
	DTS Status				ON				
	DVD Status				OFF				
I	nertia Status				OFF				
Profile(s)				Summer	and Winter				
Duration(s) (mins)	15, 30, 60, 1	20, 180, 3	240, 360,	480, 600	, 720, 960,				
	1440, 216	0, 2880, 4	4320, 576	0, 7200,	8640, 10080				
Return Period(s) (years)					100				
Climate Change (%)					40				

WARNING: Half Drain Time has not been calculated as the structure is too full.

										Water	Surcharged
	US/MH		Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level	Depth
PN	Name	Storm	Period	Change	Surcha	arge	Flood	Overflow	Act.	(m)	(m)
1 000	1	15 Summor	100	±10%	100/15	Summor	100/15 Summor			55 500	1 455
1 001	1 2	1440 Winten	100	+40%	100/15	Gummer	100/15 Summer			55.500	1 510
1.001	2	1440 Winter	100	+403	100/15	Summer				55.4/4	1.519
1.002	2	1440 Winter	100	+40%	100/15	Summer				55.473	1.628
2.000	2	1440 Winter	100	+40%	100/15	Summer				55.475	1.380
1.003	2	1440 Winter	100	+40%	100/15	Summer				55.473	1.708
1.004	3	1440 Winter	100	+40%	100/15	Summer				55.469	1.894
1.005	4	1440 Winter	100	+40%	100/15	Summer				55.466	2.041
1.006	5	1440 Winter	100	+40%	100/15	Summer				55.463	2.128
1.007	6	1440 Winter	100	+40%	100/15	Summer				55.459	2.334
1.008	7	1440 Winter	100	+40%	100/15	Summer				55.455	2.570
3.000	8	1440 Winter	100	+40%	100/360	Summer				55.449	0.099
4.000	10	1440 Winter	100	+40%	100/15	Summer				55.449	0.069
3.001	9	1440 Winter	100	+40%	100/15	Summer				55.449	2.814
1.009	8	1440 Winter	100	+40%	100/15	Summer				55.449	2.879
1.010	9	1440 Winter	100	+40%	100/15	Summer				55.447	3.247
1.011	10	960 Summer	100	+40%	100/15	Summer				55.438	3.293
1.012	11	1440 Winter	100	+40%						51.731	-0.194
1.013	12	1440 Winter	100	+40%						51.015	-0.360

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	0.489	0.97			36.3	FLOOD	2
1.001	2	0.000	0.05			1.9	FLOOD RISK	
1.002	2	0.000	0.10			3.2	FLOOD RISK	
2.000	2	0.000	0.07			2.7	FLOOD RISK	
			©1	1982-202	0 Innovyze	5		

Stantec UK Ltd			
Caversham Bridge House	Abingdon Road, Clifton Hampden		
Waterman Place	Thomas Homes		
Reading, RG1 8DN	Rev A	Micro	
Date 20/10/2023	Designed by Jasper Syms		
File NETWORK MODEL 2.MDX	Checked by Simon Hudson	Diamage	
Innovyze	Network 2020.1		

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
1.003	2	0.000	0.09			3.6	FLOOD RISK	
1.004	3	0.000	0.07			2.7	FLOOD RISK	
1.005	4	0.000	0.08			2.8	FLOOD RISK	
1.006	5	0.000	0.07			2.8	FLOOD RISK	
1.007	6	0.000	0.07			2.7	FLOOD RISK	
1.008	7	0.000	0.07			2.5	SURCHARGED	
3.000	8	0.000	0.02			0.4	SURCHARGED	
4.000	10	0.000	0.04			0.6	SURCHARGED	
3.001	9	0.000	0.04			1.6	SURCHARGED	
1.009	8	0.000	0.05			3.8	SURCHARGED	
1.010	9	0.000	0.14			2.1	SURCHARGED	
1.011	10	0.000	0.05			2.0	SURCHARGED	
1.012	11	0.000	0.05			2.0	OK	
1.013	12	0.000	0.01			2.0	OK	

Appendix G Flood Exceedance Routes

Stantec UK Limited OXFORD

First Floor, Southern House, 1 Cambridge Terrace, Oxford OX1 1RR

Tel: +44 1865 410 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.
 The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS SHOULD BE USED.
- . THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE REPRODUCED IN COLOUR.
- . THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
- ALL DIMENSIONS IN METRES UNLESS STATED OTHERWISE.
- ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE. . INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC,
- OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS. TOPOGRAPHICAL SURVEY INFORMATION OBTAINED FROM GLANVILLE GROUP DRAWINGS 8000425/4101-4104 REVISION B DATED AUGUST 2020
- . SITE LAYOUT OBTAINED FROM WOODFIELD BRADY ARCHITECTS DATED JUNE 20 DRAWING REFERENCE 19112.003

SITE BOUNDARY DIRECTION OF FLOW

poi first issue		PB	SH	2022.07.07
Issued/Revision		By	Appd	YYYY.MM.DD
	PB	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

P01 FIRST ISSUE		PB	SH	2022.07
Issued/Revision		Ву	Appd	YYYY.MM
	PB	JS	SH	2022.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM

ls	sue	Status	

P01 FIRST ISSUE		PB	SH	2022.07.
lssued/Revision		Ву	Appd	YYYY.MM.
	РВ	JS	SH	2022.07.0
	Dwn.	Dsgn.	Chkd.	YYYY.MM.

01		
Ctatus		

ed/Revision		Ву	Appd	YYYY.MM.D
	. <u>—</u> РВ	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.D

Client/Project Logo

Thomas

HOMES

THOMAS HOMES

CLIFTON HAMPDEN

FLOOD EXCEEDANCE ROUTING

Drawing No.

Client/Project

Title

Project No.

Revision P01

332110526

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

332110526-2001-004

1:250 @ A1

Scale

SHEET 1 OF 2

Stantec UK Limited

OXFORD First Floor, Southern House, 1 Cambridge Terrace, Oxford OX1 1RR

Tel: +44 1865 410 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.
 The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- 1. IF RECEIVED ELECTRONICALLY, IT IS THE RECIPIENT'S RESPONSIBILITY TO PRINT TO THE CORRECT SCALE. OTHERWISE, DO NOT SCALE FROM THIS DRAWING. WRITTEN DIMENSIONS SHOULD BE USED.
- 2. THIS DRAWING HAS BEEN PRODUCED IN COLOUR AND SHOULD BE REPRODUCED IN COLOUR.
- 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELATED PROJECT DRAWINGS AND DOCUMENTS. ANY DISCREPANCIES BETWEEN THIS DRAWING AND ANY OTHER RELEVANT ENGINEERING DRAWING SHOULD BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
- 4. ALL DIMENSIONS IN METRES UNLESS STATED OTHERWISE.
- 5. ALL LEVELS ARE IN METRES AOD UNLESS STATED OTHERWISE. 6. INFORMATION ON THIS DRAWING IS GIVEN WITH NO WARRANTY. NO LIABILITY OF ANY KIND WHATSOEVER IS ACCEPTED BY STANTEC, OR ITS AGENTS, FOR ANY ERRORS OR OMISSIONS.
- TOPOGRAPHICAL SURVEY INFORMATION OBTAINED FROM GLANVILLE GROUP DRAWINGS 8000425/4101-4104 REVISION B DATED AUGUST 2020
- 8. SITE LAYOUT OBTAINED FROM WOODFIELD BRADY ARCHITECTS DATED JUNE 20 DRAWING REFERENCE 19112.003

SITE BOUNDARY DIRECTION OF FLOW

PO1 FIRST ISSUE Issued/Revision		PB By	SH Appd	2022.07.07 YYYY.MM.DD
	РВ	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Client/Project Logo

Thomas HOMES

Client/Project

THOMAS HOMES

CLIFTON HAMPDEN

P01 FIRST ISSUE		PB	SH	2022.07.07
Issued/Revision		Ву	Appd	YYYY.MM.D
	PB	JS	SH	2022.07.07
	Dwn.	Dsgn.	Chkd.	YYYY.MM.D

PO1 FIRST ISSUE		PB	SH	2022.07
Issued/Revision		Ву	Appd	YYYY.MM
				2022.07
	Dwn.	Dsgn.	Chkd.	YYYY.MK

ssued/Revision		Ву	Appd	`
	 PB	JS	SH	•
	Dwn.	Dsgn.	Chkd.)

P01 FIRST ISSUE		PB	SH	2022	
Issued/Revision		Ву	Appd	YYYY.	
	PB	JS	SH	2022	
	Dwn.	Dsgn.	Chkd.	YYYY.I	

FOR PLANNING
This document is suitable only for the

purpose noted above.

Use of this document for any other purpose is not permitted.

Issue Status

1:250 @ A1

Scale

332110526 Revision P01

Project No.

SHEET 2 OF 2

Title

Drawing No.

FLOOD EXCEEDANCE ROUTING

Appendix H Land Owners Consent

Bunn, Peter

From:	gileshlbaxter@btinternet.com
Sent:	14 July 2022 16:30
То:	Chris Brotherton
Subject:	Burcot and Clifton Hampden Neighbourhood Development Order

Dear Chris

Please take this email as confirmation that we are content to enter into an Easement permitting discharge of surface water resulting from the NDO development at an appropriate rate into the drainage pipe running across our field.

Giles and Victoria Baxter

Lower Town Farmhouse High Street Clifton Hampden OX14 3EQ